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Storage capacity and optimal learning of Potts-model 
perceptrons by a cavity method* 

F Gerli and U Krey 
lnstitur f i r  Physik Ill, Universit2t Regensburg, Universit&svasse 31. D-93040. Germany 

Received 24 August 1994, in hnal form 30 October 1994 

Abstract. By means of a general formulation for the optimal leaning capacity of perceptrons 
wilh multi-state neurons and real-valued couplings with spherical constrainls. which we derive 
by a cavity method. we calculate the optimal learning capacity mc(Q'.~) := p,,,/[N(Q - I)] 
for perceptrons wilh a Q- resp. @-state Pons-model inpur resp. output neurons as a function of 
Q' and the stability parameter K. Among other results. the asymptote for Q' -t m is found, 
and it is shown that for x = 0 the information gain per coupling, AI = (a In Q')/(Q' - I ) ,  
converges slowly to in this limit. Moreover, for Q' -f m the sane asymptotics also apply 
for the simple case of Hebbian learning. 

1. Introduction 

The learning capacity ( Y ~ ( K )  of simple perceptrons with neurons of the Ising type, and with 
essentially unconstrained real couplings, has already been calculated exactly for general 
values of the stability parameter K (see below) in 1987 in the seminal paper of Gardner 
[l]. Io this paper, the so-called replica trick was used to calculate the expectation value 
of the function In V ,  where V is the relative phase-space volume of coupling vectors 
J := (JI, . . . , JM), which solve the given classification task under the constraint of a 
fixed norm (Jz = N )  in the limit N + 00 for constant a := p / N ,  where p is the number 
of patterns. The replica method, which is borrowed from statistical mechanics, is already 
well known (see, for example, [2-4]). However, for systems with more complicated neural 
degrees of freedom, e.g. Q-state clock neurons (see, for example, [5,6] and references 
therein), or for Q-state Potts neurons [7,8] the formulation and evaluation of the Gardner 
formalism already becomes a rather complex task. In fact, concerning the behaviour of the 
Q-state Potts-model perceptron in the limit of large Q, the results obtained up to now are 
partially contradictory [7,8], see below. 

On the other hand, in [5,6] we have already found a general formulation both for 
the evaluation of aC, and also for the AdaTron training algorithms, by which the optimal 
learning capacity of the system can be implemented in a reasonable time. 

These formulations do not cover just the usual case of perceptrons with Ising neurons, 
but also the clock-model case, and lend themselves (as already stated in 151) to a natural 
generalization for more complex neural architectures. In the present paper, we formulate 
this approach, which is based on a cavity method employing explicitly the Kuhn-Tucker 
conditions, for perceptrons with Q-state Potts neurons, i.e. we evaluate the learning capacity 
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a,(Q. K )  of such systems and give an explicit prescription for the corresponding AdaTron 
algorithm. The result for aC can be expressed by multi-dimensional integrals, which we 
have evaluated directly for Q < 10, and indirectly, through the implementation of a certain 
Gaussian process, for larger values. Actually, we have performed the evaluation up to 
extremely large Q-values, e.g. for values much larger than Q = lo5. 

In this way, we obtain a large number of precise results, including the asymptotic 
behaviour for Q -+ CO, which is approached extremely slowly. Among other consequences, 
these results include the resolution of the above-mentioned controversial results; i.e. our 
results show that the information gain per coupling in the limit of Q-t CO remains finite, 
namely = f ,  whereas by former authors it was predicted to diverge [7] or vanish [SI 
respectively. 

As already noted by [SI, the value of Q mentioned above is that of the output neuron, 
which henceforth will be called Q', whereas for the random patterns considered, the Q-value 
of the input neuron does not matter (see below). 

This paper i s  organized as follows. In section 2 we describe the model. In section 3 
we formulate an optimization problem with Kuhn-Tucker conditions leading to maximal 
stability and derive from it our AdaTron training algorithm. In section 4 we describe our 
cavity method for the derivation of U, and present results for K = 0. Additionally, we show 
in this section that, for the present model, Hebbian learning leads to the same information 
gain in the limit Q' -+ w as AdaTron learning with K = 0. In section 5 we discuss the 
optimal storage for K > 0 and present two general equations for the evaluation of aC for 
positive K .  Finally, section 6 presents the conclusions. 

F Gerl and U Krey 

2. Model definitions and some known results 

We consider feedforward networks with N input neurons, namely Q-state Potts neurons (see 
below), and with N' output neurons, which are Q'-state Potts neurons. In the following, 
for simplicity, N' = 1 is assumed, unless otherwise stated. However, usually we do not 
assume Q'  = Q. 

Thus input neuron number j can be  found in one of Q different states aj E (1, . . . , Q), 
which are described by the vectors m,, = (m,(l), , . . , m,(Q) )  spanning an equilateral 
triangle for Q = 3, a regular tetrahedron for Q = 4, etc, with 

This implies 

For a simple perceptron. the input state generates a 'presynaptic output field' h = 
(h(l), . . . , h(Q')) with 

Here, the synaptic matrix Jj(s ' ,s)  determines the input-output coupling. From the 
presynaptic output field h, the state U' of the Q-state Potts-model output neuron is 
determined as that value U' which maximizes the overlap m:, h := Ef=! m,(s')h(s'). 
In the thermodynamic limit N -+ CO, U' is uniquely defined with probability 1. 
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As is well known (see [SI) the synaptic matrix Jj(s’, s) can be constrained to fulfill the 
following gauge conditions: 

Q c Jj(S‘ ,  s) = 0 Vs‘ 
.s=1 

Q 
C J 1 ( s ’ , s ) = 0  vs. 
,7’= I 

(4) 

(5) 

Thus, h simplifies to 

j.s 

To a given set of p random input states p = 1, .  . . , p ,  with U? = n!’, with j = 
1.. . N ,  p = 1 . . . p and nj  E { I , .  . . , Q), one now assigns random ‘desired outputs’ 
U’@ = n‘@ ranging between 1 and Q’. The learning task is then to find synaptic couplings 
for which the actual output of the system is the desired one. 

A simple prescription fulfilling this task under certain conditions is the so-called Hebbian 
rule [7] 

I 1  r 

In the following we try to find the maximum number pmax of independently and 
randomly chosen input-output pairs ( n @ , n ‘ @ )  which can be learned by our system for 
given values of Q and Q’ by a suitable choice of the couplings. Following [8], we define 
the critical loading parameter 

As we will see below, under the randomness assumptions made above, ac depends on Q‘ 
but not on Q. 

For an auto-associative system with symmetric Hebbian couplings (i.e. Q = Q‘ and 
N = N‘) and random sequential updating, Kanter [7] has analysed the retrieval dynamics 
along the lines of Amit et al [91, and from the results obtained with the replica method for 
Q = 3,4 ,5  and 9 he estimated 

(9) 

However, Kanter could not determine whether at a, the retrieval quality R, i.e. the overlap 
of the stable final state U’* with the corresponding input n’, 

Q 
2 

a, N 0.138 - . 

vanishes for Q -+ CO, or whether it remains finite. 
For given R, the probability PO that the final state of an output neuron agrees with the 

desired value is PO := [ R ( Q  - 1 ) +  ll/Q. Then, the information gain per coupling element 
A I ,  relative to R = 0 (i.e. Po = l / Q  ),at ac is (see [9]) 
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Thus, A /  would diverge c( In Q with Q --+ CO if, in this limit, the quantity R remained 
finite, whereas A /  would remain finite or vanish if, in this limit, R vanished c( I /  In Q or 
faster, respectively. 

On the other hand, Shim er al [lo] considered layered feedforward Potts-model neural 
networks with Hebbian couplings between successive layers and found for Q >> 1 that 

F Gerl and U Krey 

a,(Q) - Q"@. (12) 

This would imply that the information gain AI of ( I  1) vanishes for Q + 00 as Q-'.I5 In Q. 
Although these two suggestions for the learning capacity, (9) and (12), should not be 
compared directly, (12) may be  taken as a hint that a divergence of the information gain 
A /  for Q 00 should not be expected. We will comment on these results later. 

However, our main interest is not Hebbian coupling, but the Potts perceptron with 
couplings leading to optimal stability. Nadal and Rau [SI have calculated its learning 
capacity, using separate spherical constraints for s' = I ,  . . . , Q: 

j .r  

where y is an arbitrary constant. They predicted that a,(Q') should vary slowly with Q' 
and should remain bounded from above, which would lead for Q --t CO to an information 
gain vanishing as 

All these results look questionable, as has already been noted by [ I l l ,  e.g. naively one 
would guess that for any given Q' the (bounded) optimal learning capacity calculated by 
Nadal and Rau should be larger than that calculated by Shim et al for Hebbian feedforward 
nets (see equation (12)) which again should be larger than that calculated by Kanter for the 
fully coupled auto-associative Hebbian system (9). This naive expectation is not fulfilled 
by the just-mentioned results. 

In the following sections we derive a cavity approach by which we calculate aC(Q', K )  
exactly, including the symptotics for Q' + 00. 

3. Couplings of maximal stability 

3.1. The optimization problem 

To simplify our formalism we use, in the following, the symbols J j  as an abbreviation 
for the Q' x Q-matrices Jj(s ' ,s) .  and also the symbols hK and x@ for the Q'-vectors 
with components h@(s')  and x&(s' ) .  respectively. Here x @ ( s ' )  play the role of 'embedding 
strengths' (see below). 

In the following, summation with respect to s = I , .  . . , Q will usually be abbreviated as 
a dot product as in (2), whereas for Q'-vectors, i.e. with respect to s' = I ,  . . . , Q', we will 
write the scalar product as x*y. Furthermore, for Q'-vectors we continue the components 
cyclically by assuming x ( Q  + n )  = x ( n )  for any integer n .  Thus, we can define the shift 
operator 'P, which shifts the component cyclically by one unit to the right: 

'P: ( ~ ( 1 ) ~  ... ,x(Q')) -+ ( x ( Q ' ) . x ( l ) , . . . , ~ ( Q ' -  1)) (15) 

and its natural extensions P" and 'P-", where n is any integer. Finally, we use the 
abbreviations 2 = (XI, xz, . . . , xP) and J = ( J , ,  J 2 , .  . . , JN).  Thus we can abbreviate 
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(3) as 

(16) h* := J ,  . m,t: . 

i 

With the shift operator, we can define the re-orientedfteld E” of a pattern: 

Here, for simplicity, the first component s’ = 1 has been distinguished: a pattern is stored 
if this component of the re-oriented field is the largest one. 

The stability K of a pattern set is defined to be similar, as in [8] to 

K := c / L  ”,S’(>l)  min (E”(1) - E”(s’)j/L (18) 

with 

L2 = l J l z  = J,(s’, s)’ =: tr.7,x, [ JT J j ]  
1.S.S’ i 

This definition of the stability is equivalent to using a global spherical constraint. 
To maximize the stability, we make the ansafz 

where 8 means a dyadic e’ x Q product, i.e 

This ansatz automatically fulfills the gauge (4). The second gauge condition (5)  is also 
fulfilled if 

x”(s‘)  = 0 v!J 
S’  

Here, the quantities m,;(s) and XW‘) play the same role as the product c”$” and the 
embedding strengths x” in the formula J j  = N-I E, x”e”$!‘ for the perceptron with king 
neurons and input-utput pairs {($, . . . , e l ) ,  p‘)], see [IZ]. 

According to (20), the coupling matrix Jj is a linear combination of contributions 
from different patterns with the x”(s ’ )  as cofficients, i.e. it belongs to a subspace spanned 
by the patterns. Every contribution orthogonal to this subspace would leave the oriented 
presynaptic output field h” unchanged, as can be seen from (16), whereas according to (19) 
the length L of the coupling vector Jj would be enhanced and thus the stability reduced 
according to (18). 

With a similar argument, one can show that the gauge condition (22) will also be 
automatically fulfilled (see below). This implies that the ansatz (20) is no restriction, and at 
the same time it shows that the calculation of the capacity aC(Q’, K )  can be formulated as 
an optimization task, where L has to be minimized, see below. Also the Hebb rule (7), see 
[7], can be obtained from the ansatz (20) with x”(s‘) = Q’8,,s, - I .  Additionally, Nadal and 
Rau [8] stress that a perceptron algorithm, equation (31) in [8] which allows us to generate 
a solution, whenever there is at least one, can be used with any gauge, in particular with 
(4) and (5). The resulting couplings will be of the form (20). 

The task of finding the optimal perceptron can now be formulated as follows: 
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Find xi’ such that minp,h+(,l)[EP(l) - E # ( s ’ ) )  2 K with maximal K for given random 
input-output pairs (n”. d’), with p = I , .  .. , p ,  while l J I 2  = 1. 

With ( I Q  i.e. K = c / L ,  this is equivalent lo: 

Minimize L2 := l J l z  for minw,,++~)[Ep(l) - E@(s ‘ ) )  > c 

For the norm L of the couplings, we have, with (19), 

2 0. (23) 

Analogously to the model with Ising spins [12], we define the pattern correlation p x p -  
U U 

matrix C, and the oriented correlation matrix operator E ,  

* 
The diagonal elements of C are equal to 1, whereas for random patterns and N >> 1 the non- 
diagonal elements are Gaussian random numbers with average 0 and variance l /(N(Q- 1)). 
Now, L = I J [  simplifies from (23) and (24) to the compact result 

SO, the final formulation of the optimization task with embedding strengths fullfilling 
the gauge condition (22) is 

Minimize f(Z) = E,,, xw TBP”xy under the constraints 

E’(1) - E”(s‘) 2 c VI*, VS‘ > 1 .  (26) 

Also the oriented field E’ can simply be written as 

or in compact form 

- * _  E = B x .  
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3.2. Kuhn-Tucker conditions and the AdaTron algorithm 

Thus, with (26) we have a quadratic optimization problem with p (e‘- 1) linear constraints, 
to which one can assign the following Lagrangian: 

with p (Q‘ - 1) Lagrange multipliers (h’(s‘)I p = I , .  . . , p ;  s‘ = 2 , .  . . , Q‘] for the 
constraints (26). 

Now we can apply the theorem of Kuhn and Tucker [ 131: let 2 be a local minimum 
of (26). then multipliers 2 exist, with 

0, .a%*, 2) = i (30) 
E*’(l) - E*’($’) 3 c vp, VS‘ > 1 (31) 
h*’(s’) 0 if EX’(l) - E*’@’) = c (32) 
h’”(s’)[E”’(I) - E”’(s’) - c ]  = o  Vp,Vs‘ > 1 .  (33) 

Thus, with (28), the Lagrangian takes the compact form 

I =T ++ 
L(2,  s) = f ZrB 2 + X B 2 + c i T i  (34) 

where we have used the abbreviations ,i’(l) := - C~~2 /~ (s ’ ) .  Z@(s’) = h’(s’) for 
s‘ = 2, . . . , Q‘, and iTx := E, E:l2h”(s’). Thus, minimizing (34) with respect to 

5 one finds in case of an invertible B the unique solution 
U 

X*’(l) = /*”(2) + /*’(3) + ,  . . 
X”’(2) = -h*’(2) 
X*”(3) = -/*’(3) 

. .  

(35) 

The gauge condition (22) is thus automatically fulfilled. Furthermore, for the recognition 
direction, s’ = 1, the embedding strengths are 3 0, whereas for s’ > 1 they are < 0. 

If B is not invertible, the solution (35) of (34) also applies, since one can prove that any 
other KT-point, i.e. a solution of the Kuhn-Tucker equations, leads to the same couplings. 
For networks with k ing  neurons this has already been shown in [12]. 

Now we can already define our AdaTron algorithm, which generalizes that defined in 
[I21 for the perceptron with k ing  neurons. In the (e‘- I)-dimensional hyperplane through 
0, which is orthogonal to the vector (1,. . . , 1) in Q’-space, the stability region is a segment 
spanned by Q‘ - 1 hyperplanes, as sketched in figure 1 for Q’ = 3. 

(* 

The vector U,., with 

1 

Q’ U$, := -(mt - m,+) 

1 
Q, 

- _  - [(e‘- l , - l ,  ..., -1) - (-I, -1, ..., Q‘- 1, -1, . . . ,-  I ) ]  

= (1,0,. . . ,o, -1,o, . . . ,O) 
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Figure 1. This figure visualizes for Q‘ = 3 the results f” our optimization theory, which lead 
to the construction of our AdaTron algorithm far Pons perceptrons. Everything happens in the 
( I .  I. l)-plane through the origin. The embedding strengths +p are linear combinations of the 
leaming directions U,,, the Lagrangian I@ipiicaton A’(s’) BR the ccefficienu; see (36) and 
(37). The xu counteract the noise field E’ (equation (38)) which is represented for two cases 
by the crosses (x). The vectors 1. 2, and 3 represent ml := (2. -1. - I ) ,  m2 := (-1.2, -1) 
and m, := (-1. -1.2). The xp BR the distance vectors from the fields ( x )  to the hatched 
stability region. The distance vector of this region from the origin is. according to (IS), given 
by em’/Q‘. where e is related to to the stability x and the quantity L = IJI by c = c / L .  For 
L > 0 it is convenient to assume c = 1 (which has been used in the figure), whence Y = 1 / L .  
whereas for Y = 0. L can be fixed to an arbitrary constant, while c = 0. 

is orthogonal to the hyperplane separating the attraction regions of state s‘ and state 1. 
Comparison with (35) shows that the he(& with i = 2 , .  . . , Q’, are the coefficients 
belonging to these learning directions: 

Q’-l 
x” = c h’(s‘) U$, . (37) 

The weights x” obviously compensate the noise 8” originating from the other patterns, 
(compare (27)): 

. f=2 

E” := c BPvxy =+ E’ = x@ f E”, (38) 

If for a certain pattern p exactly one h”(s’) is positive, then xP points to the 
corresponding hyperplane. If two or more constraints are active, i.e. the corresponding h- 
coefficients are positive, then x” is the shortest vector pointing from i? to the intersecting 
manifold. Thus x” is simply the distance vector from E” to the stability region. 

Although the learning directions ‘U,, are not orthogonal, one can give a simple 
prescription for the construction of the embedding strengths x@, To this end, an additional 
oriented field 8” is defined as 

N#!4 

(39) 
-!J - 

E” : = E  -(c.O , _ . . ,  0). 

Then the AdaTron algorithm for Potts model perceptrons is the following. 

be determined, such that E’(e(1) )  is largest, E ” ( e ( 2 ) )  second-largest, etc. 
The components of E” sh@d be brought intojescending order, i.e. a vector e should 
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Ife(1) = 1, then E ’ ( ] )  is already the largest component of 9”. So pattem p is stored 
automatically, and we are ready with this pattem. Otherwise, the smallest integer k z 1 
has to be found such that 

k 

a := - 1 p ( l ) + E ~ ’ ( ~ ( d ) ) )  2 E”(&’)) V s ‘ z k .  
S‘=l k +  1 

That is, the average calculated out of B ( 1 )  and the k largest components E&(e(s’)) 
should be larger than every remaining component. 
These first k elements correspond to the explicitly learned ‘active directions’, i.e. one 
uses 

x&((e(s‘)) = E”(&’)) - a 1 < s‘ 6 k .  (41) 

(42) 

The new embedding strengths are now 

This algorithm is iterated successively for all p ,  and the whole procedure is repeated, 
until the changes 8%” := z b  - z& are sufficiently small. The procedure can be 
speeded up by using an overwelaration factor w with 0 c w < 2, where for 01 > 0 one 
should take w z 1, with w + 2 for 01 + 0 1 ~ .  This is for sequential learning of the 
patterns, whereas with parallel learning w must be chosen sufficiently small. 

By construction, a KT-point is a fixed-point of this algorithm and vice wrsa. 
For perceptrons with king neurons Anlauf and Biehl [12] proved that the AdaTron 

algorithm converges exponentially fast as long as a: < aC, and the characteristic convergence 
time has been shown to diverge m (orc -a)-’ for 01 + cyc, as long as 01 < 0 1 ~ .  In our case, 
we do not have a proof, but numerically we have obtained the same result. Moreover, it is 
clear that our formalism applies to all perceptrons with neurons having well defined convex 
stability regions. 

4. Optimal learning capacity by a cavity method 

In the following, we derive the optimal learning capacity by a cavity method; our approach 
is inspired by ideas expressed in a review by Kinzel and Opper [14]. It is also related to 
the cavity approach for spin glasses as described in the book of Mtzard et a1 [ 151, although 
we do not use the additional spin (= neuron) of those authors, which has also been used by 
MCzard in a paper for perceptrons with king spins and king couplings [ 161. As in a paper 
by Griniasty [ 171 we start by assuming one simple ground state. Our approach, which leads 
to these new results, is based on the Kuhn-Tucker conditions described in the preceding 
section, and in contrast to [I71 it also calculates explicitly the response of the system to 
newly added patterns. More details and extensions can be found in [18]. 
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4.1. The response on a new pattern 

We add a new pattern, fi = 0. The noise field acting on this pattern, resulting from these 
patterns which are already implemented explicitly, is according to (38) given by 

F Gerl and U Krey 

For random patterns Bo@ and x@ are uncorrelated, therefore Eo is a random vector with 
length 

(]Eo 1’) = (( BoPxP)  ( Bouxv) )  
!DO “>0 

U 

Here, the definition of B in (24) was used. The last bracket in (47) gives a non-vanishing 
result only for j = k ,  and can be simplified to Q m,: . m,;[= Qz(QS,~,n, - l)] (see 
equation (2)). 

Thus, from (47), and with (24), (25) and (19), we get 

The vector Eo lies in the (e‘- 1)-dimensional hyperplane spanned by the Potts vectors 
and is orthogonal to (1, . , . 1). In an orthonormal basis lying in the hyperplane, from (48), 
the Q’ - 1 components are_eph Gaussian random numbers with average 0 and variance 
LzQ/(Q’  - I ) .  Adding to E an additional random component with the same properties 
in the normal direction leads to a spherical Gaussian in Fir. Therefore, it is practical to 
generate go by random numbers from a spherically symmetric Gaussian distribution with 
variance Lz Q/(Q‘ - 1) for all Q‘ components in E@’, subtracting the component parallel 
to (1,.  . . , 1) afterwards. Actually, as_ stated in the preceding section, for the construction 
of the weights x@ through the AdaTron algorithm this component is arbitrary. Therefore, 
we often omit this subtraction. 

Now, the added pattern is either already stored incidentally without implementation, or 
it must be stored byforce, i.e. with explicit embedding. The first-mentioned case happens 
for K + 0 only with probability l / Q .  So with probability 1 - (l/Q’), and for positive K 
with even higher probability, one has to ensure storing by a weight xo, and eventually also 
the other embedding strengths xp have ~~ to be changed. Then, instead of go, from (46) one 
gets Eo, with 

Here we have So = xo, whereas for fi > 0 it is 2’ = xp +ax”, where Sxp = S(l/v%) 
is a reaction of the already stored patterns on the implementation of the new pattern in the 
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couplings. i.e. on zo. This reaction couples back to pattern 0, leading to an enhancement 
of the necessary implementation strength through the term 

Thus, (6z”/6zo) is the Jacobian matrix describing the necessary response of the 
implementation strengths zP on the introduction of xo: this response is necessary to keep 
the Kuhn-Tucker conditions fulfilled. In the mean-field limit we assume that G is self- 
averaging, and it turns out that Gzo = gzo, with a negative real number g ,  see below. 

A small perturbation y’ of a stored pattern )L necessitates a correction of the embedding 
strengih zP, With (43) one obtains for the k” directions, which have been learned explicitly, 

The perturbation of pattern )L and its contribution to the response of the system arise through 
the random correlation of patterns p and 0, 

y” = B”zo j response: G”zo = B0”Gr’. (52) 
x 

With the definition (24) of B and with x”(Q’ + n)  = x ” ( n )  we get 

At this point the following remarks on the averaging process are in order. The 
embedding strengths are usually of the order z” = O(1). Since they compensate the 
influence of all other patterns, one expects (BPyxy) = 0(1/N)  for U # p. On the other 
hand, B””x” itself should be = 0(l/fi). Since we only calculate to order O(l/-,hf), the 
211 and B”” can thus be treated as on average uncorrelated. Then, in the thermodynamic 
limit, for our averages we do not make a mistake by assuming that all these expressions 
can be averaged separately. 

We now average over all values of n’P and all equally probable combinations of e&. At 
first, only patterns with k” = k are considered. The probability that such a pattern generates 
a ‘response’ of the kind discussed above, is then (k + l ) / Q ‘ .  In the square brackets [. in 
(53), where the averaging takes place, xo(s )  always appears, namely either in the leading 
term or in the sum. Of the remaining Q’ - 1 components, only k contribute, i.e. each of 
them with probability k / ( @ -  1). With the gauge (ZZ), their sum yields - ( k / ( Q ‘ -  1))xo(s), 
which leads finally to the response 
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Thus, G can be represented by a negative real number g. representing the resistance of the 
system against the implementation of the additional pattern. Furthermore, it is 

Here we have used simplifications which have already been described, e.g. that only j = k 
contributes, as well as (2 )  and the definition 01 = p / ( N ( Q  - l)), used already in (8). 

In fact, with k := l / p  E,, kfi = Ck P ( k v  = k )  k one gets 

Thus, due to the response of the patterns x@, the embedding strength xo is not given by a 
simple AdaTron learning step, but must be enhanced by a factor 1/(1 + g) 5 1. 

Additionally, g measures to what~extent the inequalities for the coupling set (equation 
(18);  see also (17)) are fulfilled. Thecoupling set has, in total, N ( Q  - l ) ( Q ' -  1) degrees 
of freedom; p . k = w N ( Q  - l)/7 of the inequalities are 'critical', i.e. fulfilled as equalities, 
these belong to the patterns and directions which have to be explicitly embedded, whereas 
the remaining a N ( Q  - l ) ( Q ' - E )  patterns and directions are stored automatically, i.e. with 
higher stability than necessary; ]gl is therefore the exhausted proportion of the number of 
degrees of freedom. For g < -1 the set of inequalities is over-determined. 

4.2. Calculation of the m ~ i m l  learning capaciry 

Now, g can be calculated self-consistently, equating pattern 0 in a statistical sense with the 
other patterns p. The optimal learning capacity a,(Q') for K = 0 is then obtained with 
g = -1 (for K > 0 see section 5). 

It was shown at the beginning of the section that the field Ea is a Lector in WQ', whose 
components are Gaussian random numbers around 0 with variance 1JI2Q/(Q' - I ) .  As 
already stated, it is not necessary for the results to subtract the component a (1, 1, . . , , 1). 
If we fix the couplings such that L := IJI LO, then according to (18) the distance 
vector from 0 to the hatched stability region in figure 1 is cm, /Q ' ,  i.e. its length is 
c J ( Q  - l)/Q', with c = K Lo. For K z 0, we usually set c = 1, i.e. K = l / L ,  however 
for K = 0, L.0 can be chosen arbitrarily, e.g. Lo = J(Q' - l) /Q such that the above- 
mentioned variances become = 1, whereas now c = 0. 

For K = 0, g ( Q ' ,  K )  can thus be calculated as follows. For all random Gaussian vectors 
in W Q  with components drawn from a Gaussian with zero average and variance 1, one 
determines the probabilities that k = 0, I ,  . . . directions are active, while the pattern is stored 
with offset c = 0 in figure 1. Then, for each random vector, the integer k is determined 
according to (40); averaging the integers k over all vectors, one gets the expectation value 
k .  In this way, the maximal stability ac(Q')  = m(Q'. 0) can be determined from (57). For 
Q' up to 10, we have been able to formulate this as a Q-dimensional integral, which could 
be evaluated with the NAG roiltine DOIFCF. For Q' < 5, with geometric considerations, 
even closed expressions for E and 01 have been obtained. 
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With the abbreviation 'Dt = (2a)-'" dt  exp ( - tZ/2) one gets 

The result cyc = for Q' = 3 agrees with that of the clock model (see [5]) as it should, 
whereas the authors of [SI obtained the value 2.320. This is probably due to a hidden mis- 
take in the calculation of [ 8 ] ,  since in our formalism the additional constraints (13) used in 
[8] are automatically fulfilled in the limit N + 00, i.e. the components s' = 1, . . . , Q' are 
all equivalent, as can already be seen from (20) for unbiased random patterns. For Q' = 4 
and 5 we get 

2ll 
ffc(4) = N 2.7580 

cos-] ((1 - 2&)/6) 

In all, the values for cyc(Q) up to Q' = 10 are for Q' = 2,3 ,4 , .  . . , IO: cyc(Q ' )  

= 2, 2.4, 2.7580, 3.0887, 3.3996, 3.6954, 3.9791, 4.2527 and 4.5179. These results are 
presented in figure 2. 

, Above Q' = 10, w,(Q') has been calculated by Monte Carlo simulation. For In Q >> 1, 
the simulation (see above) can be speeded up considerably: since E N 2111 Q' (see below), 
it is not necessary to actually generate Q' - 1 random numbers. With a variant of the 

Figure 2. O p t i d  stonge capacity aC for K = 0 of the Pons perceptran as a function of the 
number of states Q' of the output neuron for Q' < 10. 
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polar method [I91 Gaussian random values above a certain threshold can be generated. The 
number of these values is obtained from a Poisson distribution characterized by a parameter 
which is identical to the average number of elements above the threshold. More details can 
be found in [19]. 

F Gerl and U Krey 

4.3. The behaviour for large values of Q' 

Because of the contradictory results mentioned in section 2 ,  we now concentrate on the 
limit Q' + W. In this limit, the number 1 of active directions also diverges. Therefore, 
the exact value of the field component in the desired direction, i.e. the first component of 
the oriented field, is unimportant, and we replace it by 0 (see below). 

If the average of the field after learning is U, then one gets for the average number k of 
active directions 

As already mentioned, the average value t ,  obtained from the k active directions and the 
value 0 of the first component, should be larger than any of the remaining components. 
This implies 

(61) 

and with the definition of the error integral @(z)  = f-: 22, and replacing the inequality by 
an equality, one gets the approximation 

(Q' - I)(1/&)Lmtexp(-t2/2) dr 

( e ' -  1 ) ( l / f i ) ) e x p ( - t 2 / 2 )  dr + 1 
2 - U  

exp(-u2/2) 1 
-@(-U) = - 

U 4 5  Q -  1 

The results from this approximation for the reduced learning capacity Al(Q') = 
(CY~I~Q')/(Q' - l), i.e. the information gain per coupling element (14) obtained from 
(1  1) for PO = 1, are presented in figure 3 as a chain curve, together with the exact results 
(full curve), and the results from the Hebb rule (broken curve, see below). The asymptotic 
value, to which all these curves converge extremely slowly, is shown in the following to 
be = 5. ~~ 

1 

In fact, the well known asymptotic expansion of @(U) leads to 

+. U' = 2111 Q' - O(ln(1n Q')). 
e-"2/2 1 

&u3 Q' 
-=- 

From this we obtained, with (60), 

and thus 

[ 1 + U ( 1 " 3 ]  
Q ' - I  Q ' - l  

a==-=- 
k 21n Q 

or 
ache' 1 ln(1n Q') 
Q ' - I  2+'(-) '  

Al(Q')  = - = - 



0.5 

0.25 

0.0 

Thus, the information gain A I ( Q ' )  per matrix element decreases extremely slowly against 
4 and thus remains finite, in contrast to what Nadal and Rau have predicted in [8], who 
obtained AI + 0. 

At this point, we stress that for K = 0 we have extended our Monte Carlo integration 
up to Q' = whereas in figure 3 we have plotted results only up to Q' = 10'. For 
Q' = we have found AI = 0.5019, in agreement with our asymptotic estimate of 
(66). 

..-...........~~~~~~~~~-~~~--~~~~.....- 

_______-__-_------ - ________  ---- 
' """" ' """" ' " " " "  ' """" ' " " " '  

4.4. Results f o r  the Hebb rule 

The results for the Hebbian case, i.e. the broken line of figure 3, are evaluated from (1 1) for 
PO = 0.9, i.e. ac(Q ' )  has been evaluated with (7) for the case that 90% of the patterns 
p = I ,  , , . , p are classified correctly. According to figure 3, even for this case our 
asymptotic estimate (66) seems to apply; however, since for Hebbian couplings (7) we 
have not been able to go beyond Q' = lo5, it seems necessary to support this suggestion 
by an analytical estimate: for the Hebb rule, the oriented field is 

E" = z'+E" ,' +E". (67) 
Here, the noise field E" is again a random vector. Since for the Hebb rule embedding 
strengths and correlations between different patterns are independent, the variance can be 
calculated as 

= Q Q'(Q' - 1) .  (68) 
For random patterns, only the diagonal elements of the oriented correlation matrix B in 

(68) should contribute, which are unit matrices. The probability P(a, Q')  that a perceptron, 
having implemented a N ( Q  - 1) patterns with the Hebb rule, will classify, for example, 
the first pattern correctly. can be obtained from the following probabilistic experiment: it 

* 
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i s  tested whether the signal term, i.e. the sum gl + Q', where gt is a Gaussian random 
number with average 0 and variance aQ', is larger than the noise resulting from the other 
patterns, i.e. the sum of Q' - 1 similar random numbers g2,. . . , g,. With U := and 
tj := g j / m  one gets 

F Gerl and U Krey 

which generalizes the corresponding well known expression for Q' = 2 (see [21]). 
Let us now assume that ac grows much more slowly than Q', i.e. with U := one 

has U --f 00 for Q' + w. The probability P(a. Q') in (69) shall now be abbreviated as 
PO, see (1 1). and assumed to be finite (0 < PO < 1). The function f := @e-' in (69) is a 
strictly monotonic function of f l ,  which increases from 0 to 1 when t l  increases from -w 
to CO. The learning capacity can thus be estimated from above (from below, respectively) 
by the following simple consideration: let us choose at first a threshold to such that the 
Gaussian random number f l  is less than ta with probability 1 - (P0/2). 

The least favourable estimate, which can be made for f. is that f ( t )  = 1 for t > te 
and f ( t )  = z (= constant) for f < ta. If the integral still yields PO, then z = P0/(2 - PO). 
Thus, we  have 

-. ca.  (70) PD 22 = 1 - +PO * (@(U + f 1 ) ) Q - I  > - -' 1 2 - Po 
-m 

Analogously one has 

We now treat both cases simultaneously, writing f for fa (fb respectively) and C for C, ( c b  

respectively). For the following it is only important that both C and t do not depend on 
Q'. Since 0 c Po < 1, C is also between 0 and I .  Since U + 00 for Q' + CO, while f 
remains finite, we again apply the asymptotic expansion of @ ( x )  and obtain 

Again replacing Q' - 1 by Q ,  we obtain 

* ( U  + t)' zx In Q' - In(-lnC) - In(&) - h ( u  + t )  I 

This result justifies the assumption made above with respect to U. With the definition of U 
one gets for ac. in the limit Q' >> 1, 

Q' Q' ( a,=-=- I + U  - . 
uz 2 1 n Q  (77) 
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This result does not depend on PO, as long as Po is > 0, but c I .  For Q’ + CO we 
thus obtain the same information gain AI (equation (66)), as for the optimal perceptron. 

In contrast, with similar techniques we could prove in [I81 that for perceptrons which 
have been forced to implement with the Hebb prescription (7) as many patterns as correspond 
to a.(Q’) = b Q‘, with b > 0, the value of PO would not remain finite, but converge to 0 
for Q’ + CO so fast that A f  + 0. This solves the question left open by Kanter [7] (see 
section 2): as mentioned there, Kanter has obtained results for Hebbian auto-associative 
Potts perceptrons with Q‘ < 9 which apparently favoured 01, N 0.069 Q ,  but the question 
remained whether sensible recognition would be possible for these or, even in the limit 
Q‘ + CO. Since PO + 0, this is not the case, whereas for our smaller asymptotic values, 
aC(Q‘) = f In Q’ / (Q-  l),  a Hebbian Potts perceptron does perform sensible classifications 
in this limit, and with the same information gain as the AdaTron algorithm for K = 0. 

For the layered feedforward model of Shim et a1 in [lo] we have no such general 
statements. However, we have seen that the learning capacity of the Potts perceptron only 
converges extremely slowly to the final limit, both for the Hebb rule and also for the case 
of optimal stability. In [lo] it was found that, for Q 6 IO4, ac(Q)  behaved - e ” ,  with 
A N 0.85. Since this behaviour was derived from a log-log plot, it may be reasonable to 
also expect for this model that the true behaviour might be similar, as just seen, namely 
ciC rr c(Q)Q/ In Q, where c(Q) may vary slowly with Q. With a pocket calculator one can 
convince oneself that for Q 6 IO4 these two suggestions can hardly be distinguished. With 
the last-mentioned suggestion, the information gain per coupling would again remain finite 
for Q -+ CO. 

5. Optimal storage capacity for R > 0: results and two general formulae 

The case of finite stability K is, of course, more realistic for applications than the marginal 
case K = 0 considered above. 

With the formulae for L z  in (25), and with (27) and (5) and the Kuhn-Tucker conditions 
with c = 1 for non-vanishing x’(s) with s > 1, we get 

Here w(x( l ) )dx( l )  is the probability tofinda weight in [x(l),x(l)+dx(l)]. As mentioned 
above, if we normalize the couplings such that t := minp,,,+l){E@(l) - E’(s’)) = I in 
(18), then K- ’  = L = 131, and w(x(1)) results from a Gaussian distribution with average 
zero and variance per component L2 Q / ( Q  - 1) for a Q’-dimensional vector, the oriented 
field t, from which an AdaTron learning step o{t) is performed in the direction of the 
stability region. As already mentioned, the response of the other patterns necessitates an 
enhancement of the embedding strengths by the factor 1/(1 +g). Then one gets from the 



7370 F Gerl and U Krey 

0 1 2 
n' 

I 

Figure 4. The storage capacity a ( @  K ' )  as a function of the rescaled stability parameter 
K' = K * l m 8  where K is defined in (IS), is plotted against K' for Q' = ?,3, , , . ,6. 
Rescaling K' we arrive at che well known results for Q' = 2 (see [I]) and Q' = 3 (see [SI). The 
symbols represent direct simulations using random patterns stored with our AdaTron algorithm. 
These simulations yield results in xgreemcnt with the analytical calculations. Standard error 
bars are smaller ha the size of the symbols. 

final expression in (78) 

In (79) we have used := td(Q - l ) / ( Q L z ) '  and xK,{5](1) := x ( t ) J ( Q ' -  l ) / ( Q L z ) .  
Here we still have c = K L  = 1. 

Now we set L = ,/(e' - I ) / Q ,  i.e. the variance of the components of t (= E) is scaled 
to 1. As aconsequence, c := KL is now identical to K' := K&Q' - 1 ) / p ,  which we use as a 
scaled stability measure. Thus, if a pattern originally possessing the oriented field t is embed- 
ded with this scaled stability c = K',  for L = ,/(e' - l ) / Q ,  this means that by the training 
process the field is shifted beyond the limit of correct recognition by the additional amount 

(80) 
1 

k t l  
K ' ( t )  := - ( k K ' ,  0,. . . , -K ' ,  0,. . .) 

where -K' only appears for the k 'active directions'. Now, from the gauge condition (22) 
it follows that 

K ' X K , ( t ) ( l )  = K ' ( t ) .  Q( t } .  (81) 
If additionally we substitute L-' = K = K ' , / Q / ( Q  - 1) in (79) and use (Sl), we obtain 

Finally, we replace the response g of the system for a small perturbation by (57) and use 
the number k of active directions, which can be expressed with Heavisides' function 0 [ x ]  
as k = E,":, 0[x , , { t ) (s ) ] .  This leads to 

ff 

Q ' -  1 Q' - 1 
For Q' = 2,3, , . . ,6, from an evaluation of the integrals in (83). in figure 4 we present 
the dependence of the capacity ac(Q', K ' )  on the scaled stability K' ,  together with results 
obtained from direct simulations, and obtain convincing agreement. 
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Interestingly. one can show by partial integration that (83) is equivalent to 
(Y 

1 = - / Dt  (X, . ( t ) )2  
Q -  1 

Particular cases of this equation are the well known formula of Gardner [ 11 for perceptrons 
with k ing  neurons 

1 = Dt ( t  + K ) 2  (85) 
-U I 

and the corresponding equations for perceptrons with clock neurons in [5]. However, from 
a recent paper of Griniasty [I71 i t  follows that approaches of the type of (84) or (85) 
are equivalent to the replica-symmetric approximations, whereas our formula (83) yields 
different results (see [IS]) when replica symmetry is broken, i.e. when there is no longer a 
unique ground state nor a Gaussian distribution of oriented fields. 

Futhermore, as already stated by [ 171, equation (84) can formally b%derived by assuming 
that simultaneously (i) g = 0, and (ii) only the diagonal elements of B contribute. Neither 
(i) nor (ii) are true, as shown above and as can also be seen in our simulations, however, 
as long as one is i n  the replica-symmetric phase, (i) and (ii). apparently ‘conspire’ to the 
correct result: namely, assuming that the norm of the couplings, L (= l ) ,  is determined 
self-consistently, we obtain immediately from (25) 

Here the subscript RS means ‘replica symmetric’. 

6. Conclusions 

We have studied the problem of maximal storage capacity ac (8) and optimal learning 
processes of the AdaTron-type for Potts model perceptrons, i.e. with Q-state Potts input and 
Q’-Potts output neurons and real couplings constrained by one global spherical condition. 
Concerning the patterns and the input-output relation, we have assumed /A = I. . . . , p 
random input vectors, and random outputs with no correlation to the inputs, although our 
methods and the AdaTron algorithm would also apply to more general situations. Under 
the above-mentioned ‘random conditions’, the results do not depend on Q but only on Q‘ 
and on the stability K .  For K = 0. we have obtained exact results for 2 < Q’ < 10, 
where could be evaluated from multi-dimensional integrals. With the accurate and fast 
simulation of a certain Gaussian process, a, could also be obtained for much larger values 
up to as large as Q’ = Moreover, we were able to derive analytically the asymptotic 
behaviour for Q‘ -+ 00, namely cic(Q’) := pmm/[N(Q - I ) ]  + ( e ‘ -  1)/(2 In Q‘), which 
is, however, only reached exwemely slowly, namely with an error vanishing for Q‘ 4 CO 

as [In (In Q’)]/ In Q‘. For AdaTron learning, i.e. optimal stability, the information gain per 
coupling, AI(Q‘) := (orc In Q’)/(Q‘ - l ) ,  then approaches the value f slowly from above, 
whereas for Hebbian learning, with the allowance of only a finite percentage of errors, the 
same limit is obtained from below, in both cases extremely slowly, as just mentioned. In this 
way, certain open problems from the literature (e.g. [7,8, IO]) have been solved. The reason 
for the efficiency of the Hebb rule for Potts perceptrons in the limit Q‘ 4 00, which should 
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be contrasted with the different behaviour of the clock model perceptron as discussed in 
[5, 61, is probably related to the fact that for Potts neurons, due to the dimensional increase, 
the phase-space segments leading to recognition increase strongly in volume wirh increasing 
Q', whereas for clock model neurons they become smaller and smaller angular segments in 
two dimensions. 

Finally, we also obtained results for finite K ,  including two general formulae (83) and 
(84), derived by cavity arguments, which put our results into a more general context. 
These formulae will be extended and applied in a forthcoming paper to the problem of 
generalization, and in a second forthcoming paper to situations where the replica-symmetry 
is broken, namely (i) for perceptrons above cu, and (ii) for the AND-machine. 
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